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Abstract-The subject of this paper is natural convection of fluid contained within narrow-gap, spherical 
annuli. The flows are presumed to be steady and the fluid is assumed to follow the Oberbeck-Boussinesq 
model. With the gap being very small relative to the outer sphere’s radius, the dependent variables are solved 
for by using a regular perturbation method in powers of the relative gap width, E. Solutions were found for a 
heated outer sphere through terms of order E”. The results include Nusselt numbers, and contours of 
streamlines and isotherms as functions of the Grashof and Prandtl numbers, E, and Q, the dimensionless 
uniform energy generation rate parameter. The value of .s ranged from 0.1 to 0.001, Pr from 0.01 to 10, and Gr 

from 7 x lo6 to 5 x lO’*. 

1. INTRODUCTION 

NATURAL convection flows in spherical annuli have 
been studied extensively for over 35 years. Most of the 
data obtained has been for wider gap cases. Presented 
here are results specifically addressing flows within 
narrow-gap annuli. The method used to compute the 
flow field takes advantage of the narrowness of the gap 
in that a regular perturbation method is used, 
expanding the dependent variables in powers of the 
small parameter E, the dimensionless (or relative) gap 
width. This produces algebraic functions for the steady 
flow field which depend on the spatial coordinates and 
have the Grashof (or Rayleigh) number, the Prandtl 
number, and E as parameters. In some cases, Q, the 
dimensionless energy generation rate is also a para- 
meter. 

Such a problem was posed as a first step in 
understanding the curious behavior of the flow field as 
first described in the flow visualization experiments of 
Bishop using air [l, 21, and later by Yin using water [3, 
41. A summary of these and other related flows is given 
by Powe et al. [S, 63. As a brief outline of the 
phenomenon, consider that the fluid and (large gap) 
geometry are fixed so that the Grashof number is the 
sole characteristic variable for the annular flow field. 
Changes in it, then, can be thought of as changes in the 
temperature difference between the boundaries, the 
driving potential for the natural flow. Ifthe temperature 
difference is ‘small’, the flow lines are found to be 
of a persistent, steady shape. For somewhat larger 
differences the flow may distort, but is still steady. 
Should the temperature difference exceed a critical 
value, the steady flows transform to a variety of 
unsteady, multiple eddy flows. Refer to Figs. 3 and 7 
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of Powe et al. [6] for documentation. The critical 
temperature difference, or Grashof number, for this 
transition is a function of the Prandtl number and E 
tending, for a given Prandtl number, to decrease as E 
approaches zero. It is our hypothesis that this sort of 
transition phenomenon is a bifurcation of the steady 
base flow due to an instability. The availability of a 
functional form of solution, as opposed to a tabular 
one, for the narrow-gap flows simplifies the study of 
the linear stability of the flow field. The stability 
computations are, however, not trivial. Aside from this 
specific problem area, the flow field of its own is of 
interest as an area of research. 

It is the intent of this paper to present algebraic, 
functional solutions for the steady natural convection 
flows in the annulus formed by two concentric spheres 
whose radii are nearly identical. Their boundaries have 
uniform temperature with the inner sphere being 
cooled. The study of the influence of uniform energy 
generation on the solutions is also provided for. It is 
noted that the experimental parameters now available 
exceed the range of applicability of the present results. 

First, the problem is formulated and the solution 
method is outlined. A discussion of the solutions and 
their range of applicability regarding parameter values 
is presented. A discussion of the results begins with the 
Nusselt number data and continues with the effect of 
the Grashof number (or Rayleigh number), the Prandtl 
number, the relative gap width, E, and finally internal 
energy sources on the flow field. Lastly, brief closing 
comments are presented. 

2. MODELLING THE FLOWS 

Consider two spheres with common centers whose 
inner radius is Ri and outer radius is R,. The gap width, 
L, is R, - Ri and the radius ratio is q = RJR,. The 
relative gap width is then defined as 

&=L/R,=l-_tl. (1) 
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NOMENCLATURE 

V2( ) Laplacian operator in spherical 
coordinates 

D2( ) =E-~a~/a~2+[&(~-l)+1]-2 
x [8*/82-COt e a/a01 

D4( ) =D2[D2( )] 

90 gravitational acceleration constant 
[m s-‘1 

Gr Grashof number, g0flATRz/v2 
Gr’ modified Grashof number, Gr .z4/& 
J(a, b) Jacobian operator, a&-a& 
k thermal conductivity of the fluid 

CWm -r “C_‘l 
L gap width between spherical 

boundaries, R, - Ri [m] 
Nu surface-averaged Nusselt number, cf. 

equation (27) 
Pr Prandtl number, V/U 

% 

local heat flux, cf. equation (23) 
volumetric energy generation constant 
[W mm31 

Q dimensionless generation rate constant, 

QR,2/kAT 
r radial coordinate [m] 
Ri, R, inner and outer radius of the 

boundaries [m] 
Ra the Rayleigh number, Gr Pr 
Ra’ modified Rayleigh number, 

Ra e4/fi 
T(r, 0) the temperature function [“Cl 

q, TO inner and outer boundary temperatures 

WI 
AT = T,--T 

0, radial velocity component, 
r-2cosec0a$/a0[ms~‘] 

09 latitudinal velocity component, 
_-r-i cosec 0 atjjar [m s-~]. 

Greek symbols 
fluid thermal diffusivity [m2 s- ‘1 

; fluid coefficient of thermal expansion 
[“c-l] 

6ij =lifi=jorOifi#j 
& relative gap width, L/R, 

i stretched radial coordinate, (r - V)/E 
radius ratio, RJR, 

B latitudinal coordinate 

; 

fluid kinematic viscosity [m’ s ‘1 
longitudinal coordinate 

$(r’, 0) streamfunction [m3 s- ‘1. 

Superscripts 
* physical or dimensional variable. 

Subscripts 
C critical value 
lim limiting value 

r = alay 
0 = alao. 

The spheres will have a relatively narrow gap when 
q+lors+O. 

It is assumed that the flow has evolved to a steady 
state due to the naturally occurring buoyancy forces 
within the fluid arising from the local density variations 
due, in turn, to local temperature differences associated 
with (TO - TJ, the difference in boundary temperatures. 
Gravitational acceleration is presumed to be uniformly 
parallel and vertical as compared with a radial vector 
found on a planet or star. The fluid is assumed to follow 
the Oberbeck-Boussinesq approximation [7]. Finally, 
due to the presumed symmetry of the flows about the 
vertical axis passing through the spheres’ centers, the 
flow field is independent of the longitudinal coordinate, 
4, leaving r and 0 as the independent spatial variables of 
the problem. 

These assumptions allow astreamfunction, $(r, e), to 
be used as a dependent variable and ultimately to have 
the pressure field eliminated as a variable. Thus the 
streamfunction, +, and the temperature are the 
dependent variables of the problem. In order to express 
the govening momentum and energy balance in terms 
of the relative gap width, E, the transformation from the 
radial coordinate to the new coordinate, [, given by 

i = (r--)/(1-n) = @+a---1)/a (2) 

is used so that the domain shifts from q d r < 1 to 
0 < c < 1 and of course the &range, 0 < 0 < 7-1 remains 
unaltered. In terms of c and 6’ then, the momentum and 
energy balance are 

D41c/ = JGrs-r[a(<- 1)+1]-2{2cosec2 QD2$ 

x J($, [~(5 - 1) + 1] sin e) + cosec e.r(w$, $) 

-sin e[&(i- l)+ l]*J([c(I- 1)+ l] cos 0, T)}, (3) 

and 

V2T=,/?%Pra-1[a(~-l)+1]-2cosec&J(T,~)-Q, 

(4) 

wherein the variables are scaled as 

r = r*/R,, 

and 
T = (T*-Q/AT 

The dimensionless parameters are 

Q = eR,‘/kAT 

= dimensionless energy generation rate, 

Gr = g,flATRz Jv’ = Grashof number, (‘5) 
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and 

Pr = v/u = Prandtl number. 

The conditions to be satisfied by the solutions are 
first for the streamfunction : 

4q0, 4 = tis@, 4 = $& 4 = tie(L 4 = 0 

4qi, 0) = &(i> 4 = 0 (7) 

$(O, 0) = Ic/(l, 0) = 0 

and for the temperature function : 

T(0, B) = 0 

T(l, (3) = 1 (8) 

T,(i, 0) = Te(T, Jr) = 0. 

3. SOLUTION METHOD AND 

PARAMETER VALUES 

In this section, details regarding the method used to 
solve for $, T = $, T(<, 0) are presented along with the 
solutions themselves. Since the dependent variables are 
implicitly dependent also on the Rayleigh (or Grashof) 
and Prandtl numbers, E, and Q, it is necessary to 
estimate over which values of these parameters the 
solutions might be evaluated with the expectation that 
the solutions then predict the associated physical flow. 
This topic closes the section. 

3.1. The regular perturbation method 

The governing equations (3) and (4) along with 
conditions (7) and (8) lend themselves to a regular 
perturbation technique in terms ofthe small parameter, 

E. Let 

T(i, 0) = : emT,(i, e), 
m=O 

and 

$(6 6) = g s”ti,(i, e), 
n=o 

(9) 

so that the functions T, and $” can be solved in a 
step-by-step way. The series (9) are substituted 
into equations (3), (4), (7), and (8). In addition, (3) is 
multiplied by ~~[a(< - 1) + 11’ and (4) by E’[E([- 1) 
+ 11’toeliminatefactorsofain thedenominatorsofthe 
terms in the equations, noting that here E is small and 
the case E = 0 is a valid limit which occurs naturally in 
this problem. The effect of very small E is therefore 
retained. Following these steps, all terms multiplied by 
like powers of E are collected and individually set to 
zero. This produces partial differential equations for the 
‘nth’ order function I,+, and ‘mth’ order function T,, 
These equations are shown in the Appendix. The 
boundary conditions for these problems are 

+,(O, 6) = ti.(l, 0) = (+.),(O, 6) = (+~~(l, 0) = 0, 

n=0,1,2 ,..., N 

(IO) 

and 

T,(O, f3) = 0 

T,(l, 0) = 6,,, m = 0, 1, 2,. ..,M. 

As an example, the governing differential equations 
for the zeroth-order problem are : 

aJ*,fap = 0, 

and (11) 

a2iyap = 0 

subject to (10) above. The solutions are : 

and 

kk(i, 4 = 0 

~,(i, 0) = i. 

(12) 

3.2. Higher-order solutions 
The solutions for higher-order functions depend 

upon lower-order solutions so that $i, Tl depend on 
$,, T,; ti2, T, on both $,, T, and $,, T,, etc. Since T, 
and $,, are known explicitly, then $i, and Tl can 
be found. Thus, this step-by-step approach allows 
solutions in exact, algebraic functional form to be 
obtained for virtually any order solution, in principle. 
In practice, the algebra, if done by hand, becomes 
extremely tedious. However, the computer is available 
to somewhat ease this limitation. 

The solutions themselves, for a given order, can be 
grouped into polynomials in 5 multiplied by functions 
of 0, with appropriate factors of Grashof and Prandtl 
numbers, E, and Q interspersed. Each power of [ has an 
associated coefficient. These coefficients for terms 
through M = N = 8 have been found in exact form by 
Wright [8] and in that same work through M = 
N = 11 via computer generation. (N.B. A copy of ref. 

[S] may be obtained from R. W. Douglass for the cost 
of its reproduction.) 

To illustrate the form ofthe solution, the expressions 
for M = N = 5 are now shown. 

Vi,@)= ~{l+~(1--I)+~2C(1-i)2+Q(1-~)/21 

+&3C(1-r)3+Q(1-r)(l-21)/61 

+~~[(1-1)~+Q(1-[)=(1-2[)/6 

+ Gr Pr cos O( 1 - 5c3 + 614 - 2(‘)/720] 

+~~[(1-~)~+Q(l-,)~(l-2,),6 

+ Gr Pr cos O(43 - 35[-455c3) 

+ 1057c4 - 84Ot;’ + 230c6)/25,200] 

+ O(sV (13) 

and 

$(<, 0) = fi sin2 I3<‘{ - s3(1 - <)2/24 

+~~(2-3[+~3)/120+~5[2(4-5[-5<2 

+9[3-3[4)-3Q(1-<)2(1-2~]/720+O(~6)}. (14) 
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There are several comments necessarily made 
regarding the functions (13) and (14). First, the 
functions multiplied by so represent the associated 
thermal diffusion problem for a material contained 
between two parallel planes (in the Cartesian 
coordinate system) subject to (0, 1) boundary 
conditions. That is, for very small values of E, the 
momentum equation reduces to $ = 0 and the 
Laplacian operator reverts to its Cartesian form. 
Secondly, notice that the conduction solution for 
the spherical annulus problem satisfying the same 
conditions is 

T(r, 0) = (r - Mr(1 - rl)lp 

or in terms of c and B 

(15) 

T&f?) = [[l-E(l-[)]-l. (16) 

Since < is bounded by zero and one, and E is a small, 
positive number, the quantity ‘E( 1 - [)’ is also small so 
that (16) can be expanded in a binomial series giving, 

thus, 

T(i,8) = i[1+E(1-~)+EZ(1-1)2 

+&3(1-[)3+ . ..I. (17) 

If (13) is forced to yield the conduction result only, by 
setting Gr and Q to zero, the exact series given by (17) is, 
not unexpectedly, reproduced. In effect, the perturba- 
tion solution is attempting to reproduce, to ever 
increasing accuracy, the solution for the spherical 
Laplacian operator. Finally, by examining the 
functions (13) and (14) it is found that internal energy 
generation effects are of higher order as are those of 
circulation on the temperature field (i.e. $ # 0). 

or 

Pr,i, = 720/E4Gr 

and, for the generation rate function, Q 

(20) 

Qlim = 2/E2. (21) 

As an example, suppose the geometry is selected so that 
E = 0.05. Then 

Q < Qlim = 800 

and 

Gr < Gr,im = 1.15 x 108/Pr. 

Since the guidelines result from the solution for 
T([, 0) it is necessary to examine their influence on 
I,@, 0). Clearly, the magnitude of $ is uniquely related 

to Grlim since fi multiplies the entire solution. Also, 
the effect of Q on $ is seen from (14) to be of the order of 
JQ~~/i’l?o, or smaller. Thus, if Qlim from (21) is 
substituted into this ratio, the coefficient is then ~~1240, 

clearly less than one. 
Convergence of the series was tested in detail in ref. 

[LX], and will not be reproduced here. The flows for 
Gr = 6.5 x 1012, Pr = 0.01, E = 0.01, and Q = 0 were 
computed for N = M = 3, 7,9, and 11. The isotherm 
and streamfunction contours were plotted and 
compared. The results for N = M = 3 and 7, and for 7 
and 9 both, when compared with each other, showed 
marked changes, with those changes of the second set 
being less (qualitatively) than those of the first. Between 
N = M = 9 and 11, only minor or fine adjustments 
were observed in the flow field. This suggests that T and 
II/ have nearly converged for N = M = 11 in this case. 

3.3. Guidelines for the parameter values 4. PRESENTATION OF RESULTS 

The solutions described above are found to be 
functions of the dimensionless parameters Gr, Pr, Q, 

The flow field is known in terms of the stream and 

and E. These are available for manipulation, but not at 
temperature functions through M = N = 11 as 

will. By examining (13) and (14), it is noted that the 
outlined in Section 3 as 

various terms of the solutions containing the four ti, T = $, T(i, e; Gr, Pr, Q, 4. (22) 
parameters above could become large, certainly 
greater than one, causing a given nth-order solution to 
be larger than the (n - l)th-order solution. This implies 
a lack of convergence of the series. It is then necessary to 
establish some guidelines for parameter values. 

The following two ratios involving all four 

dimensionless parameters ofthe problem suggest limits 
for their values. They are extracted from (13) and are 
such that they insure decreasing magnitudes of 
successive orders of solution. Thus, set 

c2Q 
? -=c1 

and 

L 

E4Gr Pr 

720 
< 1. (18) 

It is suggested, then, that 

Gr,,, = 720/E4Pr (19) 

These results are presented as contours of constant 
values ofi& and Tin the c-0 plane, which is a rectangular 
domain. The transformation (2) changes the very 
narrow gaps to a uniform rectangle, independent of E. 
This is extremely helpful in observing the flow’s nature 
since for E = 0.01, for example, the gap width is only 1% 
ofthe outer sphere’s radius. This is too narrow a region 
to effectively view the flow lines. Thus, the trans- 
formation not only simplifies the solution technique 
needed, but also expands the flow field so that it can be 
studied. 

One of the most significant properties of the flow is 
the rate at which heat is transported across each 
sphere’s boundary. This effect is commonly given as the 
Nusselt number, Nu, or as is sometimes expressed 
k,,,/k. This is the effective value of the fluids thermal 
conductivity due to convection and conduction to its 
actual conductivity. It is this characteristic of the flow 
that is studied first with $ and T given later. 
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4.1. The Nusselt number 
It is possible to think of two Nusselt numbers, one 

representing the average value over a sphere’s surface of 

the heat lIux across that surface, and the other being an 
expression of the local, latitudinally varying surface 
flux. That is, 

q*(8) = -k 13T*,‘&*l,,,.,. (23) 

This can be rewritten as 

q*(Q) = -(kA~/K,c)@~/‘X)lo, t. (24) 

Substituting the conduction temperature solution, 
excluding generation effects, into (24) gives 

q: =(-kAT/R&(l-c)[l--e(l-<)]-*I,*,. (25) 

The local Nusselt number, Nu(@, is then 

Nu(O) = 4*/q: = C(1 -c(l -i))*/(l-41W/~~)l0,i. 

(26) 

The average of Nu(@, fi, is defined as 

s 

71 
q*(8) sin 0 dQ 

fi= On 

i 
q,* sin B d@ 

0 

= ~I___ 
0.1' 

(27) 

where fi = %(Gr, Pr, E, Q). In the absence of internal 
energy sources or sinks, fimust be the same value for a 
given Gr, Pr, and E on each boundary so that selecting 
either 4 = 0 or 1 is immaterial. Illustrations showing 
Nu(6) are not given here, however, complete details are 
given in ref. [S]. 

Of interest are the data for Nu. These are shown in 
Fig. 1 for Q = 0, 0.001 <E < 0.1, and 0.01 < Pr < 

1000. A new parameter, the Rayleigh number Ra’, 
is used as the independent parameter since the data for 
the broad ranges of E and Pr indicated collapse onto 

a single curve with maximum deviation of the data 
from the line being 0.15% with a standard deviation 
of 0.03%. Ra’ is defined as 

Ra’ z Gr Pr z’/&. (28) 

In refs. [g-11], Astill, and Leong et al. defined 
three regions of the flow field characterized by a 
predominantly conductive domain, a predominantly 
convective domain, and a transition domain connect- 
ing the prior two. The explicit definitions are : 

Regime I : conduction 

Nu < 1.001 or Ra’ < 50 

Regime II : transition 

1.001 < fi < 1.12 or 50 < Ra’ < 575 (29) 

Regime III : convection 

Nua 1.12 or Ra’ > 57.5. 

Figure 2 compares these results with two other sets of 
data. In ref. [ 121, Brown was the first to compute large 
Rayleigh number flows in this geometry using finite 
difference methods. His data are not restricted to 
narrow gaps, but several runs were made for q = 0.91 
(or E = 0.09). Astill [9] also used a finite-difference 
method to compute flows for a variety of parameters 
including q = 0.91 and 0.97 (or a = 0.09 and 0.03). 
Brown used a modified Rayleigh number, Rat = 

Gr Pr c4/(1 --E), which is a factor of l/G larger 
than Ra’, to develop a correlation for fi = fi(Ra+) as 

% = 0.186(R~+)~~~~~ for 0.09 < E < 0.29 (30) 

with a standard deviation of 3.7%. Using Brown’s data 

FIG. 1. The surface-averaged Nusselt number expressed as a function of the modified Rayleigh number, Ra’. 
This curve is a correlation of a series of results for 0.001 < E < 0.1 and 0.01 < Pr & 1000. The curve has a 

maximum error of 0.15% and a standard deviation of 0.03%. 
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0.12 - - Present work, 0.9 < 7) ) 0.999 

-- Asttll. 7 = 0.97 

...*a 0.1 - Astill. 7) 0.91 = 

0 Brown, 7) = 0.91 

0.06 - 

0.06 - 

0.04 - 

0.02 - 

Ra’ 

FIG. 2. A comparison of the current data for the Nusselt number with prior results. Note that q = l--E. 

and refitting them to a correlation in terms of Ra’ gives 

fi = 0.184(Ra’)0~Z75 (31) 

with a standard deviation of 1.6x, a somewhat better 
data fit. From the current results for small E, 
correlations can be found giving 

L% = 0.650(Ra’)0~0s24 for 50 < Ra’ < 575 (32) 

and 

fi = 0.116(Ra’)0.355 for Ra’ 2 575, (33) 

where (32) has a standard deviation of 0.88% and (33) 
has 0.85% standard deviation. 

4.2. Thejowjeld with Q = 0 
In this section, the influence on II/ and T of the 

parameters Gr, Pr, and E are studied. The effect of 

Isotherms 
0 

15 

30 

45 

60 

75 

l3 90 

105 

Inner l2o 
sphere 

T 

0 

135 

165 r C 

14 

04 

0.1 
0.7 

36 ‘: 
i 0.6 0.7 ( 

3 

energy sources are not a part of this section’s discussion, 
but are studied in Section 4.3. Here, each parameter’s 
influence is studied in turn by fixing two of them, while 
the third is allowed to vary. The guidelines of Section 
3.3 are followed. 

4.2.1. Grashof number study. The following four 
figures show how the flow field appears for values of Gr 
that place the flows in each of the regimes listed earlier. 
In these illustrations Pr = 1, E = 0.01 and Q = 0 with 
Gr = 0.5 x lOlo, 4 x lOlo, 5.7 x lOlo, and 7.45 x 10” 
(i.e. Ra’ = 50,400,575, and 750). Figure 3 is for a value 
of Gr at the end of the conduction regime. Here, the 
isotherms are very nearly parallel lines-i.e. concentric 
spherical shells in the (r, 0) coordinate system-as 
expected for heat conduction. The streamfunction is 
non-zero showing that fluid buoyancy is a factor. As in 
all cases shown in this paper, the flow is upward along 

Stream lines 

l4---7=T 

)uter 
,phere 

30 

45 

60 

75 

165 

0 0.1 0.2 0.3 0.4 0.5 Q6 07 0.8 0.9 

5 

F1~.3.TheGrashofnumberseries.IntheseflowsPr = 1,~ = O.OlandQ = O.HereGr = 0.5 x lO’O(Ra’ = SO). 
The streamline magnitudes have been multiplied by 104. 
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OT 
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OI 

15- 
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45- 
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135 - 
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l65- 

. 
5 

FIG. 4. The Grashof number series. In this case Gr = 4 x 10” (Ra’ = 400). The streamline magnitudes have 
been muItiplied by 104. 

the warm outer sphere and downward near the cool 
inner sphere. There is but one eddy, also characteristic 
of most of the flows shown here. Figure 4 is for a flow in 
the transition regime. Circulation of the fluid has an 
apparent effect on the fluid temperature since the 
relatively warm fluid has been convected towards the 
upper most part of the annulus, near 0 = 0 and [near 1, 
while the cool fluid has been moved to the lower part of 
the annulus (6’ II: 180”, c N 0). The peak circulation rate 
has increased by a factor of nearly three over those 
results in Figure 3. Figures 5 and 6 continue these trends 
with significant convective impact shown in Fig. 6. The 
isotherms are largely distorted, however, the stream- 
lines are relatively undistorted with the peak 
circulation rate only a factor of 1.45 larger than in Fig. 4. 

Isotherms 

180, , , , , , , , , , 
0 0.1 0.2 0.3 Q4 0.5 06 0.7 0.8 0.9 I 

These last results fall well within the Regime III domain. 
Although no data are presented here, several 

computations were made for a reversal of the thermal 
boundary conditions. That is, let I’(?, 0) = 1 and 
T( 1,s) = 0. This produces circulation patterns in the 
opposite sense compared with these data, but of the 
same absolute circulation rate for comparable 
parameter values. The isotherms were simply the 
mirror image of the results here. The Nusselt numbers 
were unchanged, as expected. 

4.2.2. Relative gap width study. In this section, E is 
allowed to vary while Gr = 7 x 106, Pr = 1.0, and 
Q = 0. Figure 7 has a relatively wide gap width with 
E = 0.10 (or q = 0.9) while Fig. 8 has E = 0.001 (or 
q = 0.999), a very slim gap. In Fig. 8, the gap is so nar- 

Streamlines 

$11 

165 
0.1 

l80,, , , , , , , , , 
0 0.1 0.2 a3 a4 0.5 0.6 0.7 0.6 09 

5 

FIG. 5. The Grashof number series. In this case Gr = 5.7 x 10” (Ra’ = 575). The streamline magnitudes have 
been multiplied by 104. 
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FIG. 6. 
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FIG. 7. The E series. In these flows, Gr = 7 x 106, Pr = 1, and Q = 0. Here E = 0.10 (Ra’ = 738). The streamline 
magnitudes have been multiplied by 103. 
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row as to virtually negate the effects of convection. The 
maximum valueoftjis -6.89 x lo-‘and theisotherms 
are essentially those for conduction. For the wider gap 
case the isotherms distort as in Fig. 6 and the maximum 
value of $ increases to - 7.04 x lo- 3. Comparing the 
values of maximum $ shows that as E increased by a 
factor of lo*, the streamfunction increases by nearly a 
factor of 106. By examining (14) however, it is seen that 
for Gr, Pr, and Q fixed, the magnitude of $ is 
proportional to s3, explaining this rather large 
variation in the magnitude of 1(1. Note that in Fig. 8, 
Ra’ = 7 x lO-‘j while in Fig. 7, Ra’ = 738. Thus, the 
E = 0.001 case is very much as in Regime I and the 
E = 0.1 case as in Regime III. 

in Figure 9-12 are essentially identical with the 
maximum value of IJ+ very close to - 2 x 10m4. 

4.3. Thejowjeld with energy sources 

4.2.3. Prandtl number study. To illustrate the effect of 
Pr on the flow field, four values of Pr are selected 
covering three orders of magnitude: 0.01, 0.1, 1.0 and 
10.0. Here, Gr = 7 x log, E = 0.01, and Q = 0 and the 
results are shown in Figs. 9-12 for increasing values of 
Pr. In these cases, Ra’ increases from 0.7 to 703.5, again 
covering all three flow regimes. By keeping Gr fixed, the 
kinematic viscosity (v) is also fixed so that changing Pr 
implies changing the thermal diffusivity (Q) so that 
Pr = v/cl means that larger Pr are found for smaller val- 
ues of CI, and vice versa. Then, for small Pr, the fluid rap- 
idly diffuses energy giving a conduction distribution. 
Likewise, for larger Pr, the fluid is not as able to diffuse 
energy, thereby retaining it longer. It is expected that as 
Pr increases, the more distorted the isotherms become 
indicating an increasing influence on the flow field of 
convection. These trends are borne out in the four 
figures of this section. 

As a final series of results, the effect on $ and T of 
uniform volumetric energy sources within the fluid is 
examined. The presence of thermal sources causes the 
average temperature of the fluid to rise. Due to the 
annulus shape, it is expected that the fluid will attempt 
to arrange itself so that the warmest fluid will be found 
along the outer sphere and in the upper latitudes. 
Figure 13 and 14 demonstrate this trend. In these 
figures, Gr = 8.95 x lOlo, E = 0.01, Pr = 1.0, and 
Q = 5000 and 25,000, respectively. Data for a similar 
flow, but with Q = 0, are shown in Fig. 6. The shape of 
the circulation patterns is largely unaffected by Q, a 
surprising result at first thought. However, equation 
(14) for $ shows that Q enters in the &‘-term andis also 
multiplied by 3/720. It is, therefore, really not surprising 
that tj is so insentitive to Q. The results for the 
distribution of T([, 0) are dramatically altered by Q. 
Equation (13) shows that Q effects Tin the &*-terms. 

The isotherms form two segregated regions in both 
figures; one with T > 1 and the other with T < 1. 
Those isotherms with T < 1 have a comparable shape 
for each Q, showing some distortion from the con- 
duction profile. As Q grows, so does the region with 
T > 1, beginning as a nearly indistinguishable region in 
Fig. 13, but occupying roughly a quarter of the annulus 
in Fig. 14. 

4.4. Multicellularj-lows 
By again referring to the solution for T and + in During the course of computing the flow fields for 

algebraic form, Pr is first present in the E4-terms of the small values of the Prandtl number, it was observed 
equation for T as shown in equation (13) while for ti, it that it was possible for the streamline patterns to 
first appears in the &‘-terms (cf. [8, p. 13 11). Clearly the change from a single cell to a multiple cell pattern. It 
temperature is much more sensitive to Pr than the was possible to define a Grashof number, Gr: 
streamfunction. In fact, the streamline contours shown = Gr,e4/( 1 -E)~/* which defines the onset of multicel- 
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FIG. 13.Thegenerationrateseries.111 theseflows,Gr = 8.95 x lo”‘,& = O.Ol,and Pr = l.O(Ra’ = 9OO).HereQ 
= 5000 and the streamline magnitudes have been multiplied by 104. 

lular flow. These results for ‘1 = 0.9 (E = 0.1) and rl 
= 0.99 (E = 0.01) are shown in Fig. 15 which gives Gr: 
= Gr’,(Pr, q). Several features of these results are 
apparent. First, these critical values fall below the 
maximum Gr defined from the guidelines of equation 
(19) and so are valid results. Secondly, Gr’ decreases as 
Pr increases for a given gap geometry. Thirdly, Gr: 
increases as the gap width narrows. Finally, no 
multicellular flows were found for Pr above one or, 
more positively, Pr values less than 0.2 were needed to 
produce multicellular flows. 

A typical flow fielddemonstratingmultipleeddyflow 
is shown in Fig. 16 for Gr = 6.5 x lo”, E = 0.01, 
Pr = 0.01, and Q = 0. Here, the streamlines show two 
very large counter-rotating eddies located in the upper- 
most and lowermost parts of the annulus with the 
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original single eddy highly distorted. The isotherm 
patterns are appropriately distorted by the convection 
pattern. The counter-rotating eddies carry some of the 
fluid adjacent to the boundaries towards the center of 
the annulus and also cause relatively warm and cool 
pockets of fluid near the upper and lower axes of the 
annulus, respectively. 

The origin of the multiple cell circulation pattern can 

be explained as follows. It has been demonstrated that a 
small Pr value is necessary, but not sufficient, to form 
multiple cell flows. The joint requirement of large 
enough Gr’ provides the closing concept. Thus, think of 
selecting a spherical geometry (Ri, R,) and a fluid such 
that Pr is small enough (i.e. select /?, v, and a). Then, the 
only quantity left is the temperature difference, A7: 
NotethatfiATwithin theGrashofnumber,isameasure 
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FIG. 14. The generation rate series. Here Q = 25,000 and the streamline magnitudes have been multiplied by 
104. 
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FIG. 15. Transition from unicellular to multiple cell flows. The ordinate is the value of Gr’ = Gr E~/J~J which 
must be exceeded, for a given value of Pr, in order for the flow to change from unicellular to multicellular flow. 

In this sense, it is a critical value of Gr’. Note that q = 1 --E. 

of local density variations due to temperature. Thus 
increasing the Grashof number is equivalent to 
increasing the sensitivity to buoyancy of the fluid. 
Using the isotherms together with the circulation 
patterns (e.g. Fig. 16) the reasoning proceeds as follows. 
With small Pr, the fluid readily adapts its temperature 
to its surroundings. Thus, the warmest (lightest) fluid 
will tend to seek the highest parts of the annulus and to 
remain there. A small eddy is spawned there for a value 
of Gr’ just above the limiting value. This small eddy 
forces the bulk of the fluid to divert its path away from 
the outer boundary before it has completed its sweep 
over that boundary. By the time it is diverted, it is 
already essentially at the boundary temperature. The 
diverted fluid moves across the annulus towards the 
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inner, cooler boundary where it comes into contact 
with it. Because of the small value of Pr, the fluid is 
rapidly cooled. As it is cooled, it becomes relatively 
heavy and ultimately drops away from the boundary. 
This also spawns an eddy trapped near the inner 
boundary in the lower latitudes. These small eddies 
grow as the buoyancy sensitivity increases (i.e. BAT’). 
The main eddy becomes more andmoredistorted as Gr’ 
increases. These results suggest that the flow field 
ultimately will end up as four distinct eddies, for large 
enough Gr’. 

5. CONCLUDING REMARKS 

The research discussed in the prior four sections was 
done as a first step in the process of understanding the 
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much larger problem of stability of natural convection 
in spherical annulus enclosures. The goal was to obtain 
a functional form of solution for this class of base flows 
which could be used in the stability and bifurcation 
analysis currently underway. A parallel goal was to 
understand the steady base flow itself. These have been 
successfully accomplished as detailed in the results 
presented. 

It has been shown that for even a gap width ofO.l% of 
the outer sphere’s radius, the fluid moves according to 
the general description of the steady flows given by 
Bishop et al. [2] and Yin et al. [4]. When in the 
unicellular regime, the convection occurs in the 
crescent eddy mode. The occurrence of multiple eddies 
here was for only small Pr fluids as compared with the 
results of refs. [Z] and [4] for larger Pr values. These 
multiple eddies arise from the physics of the flow and 
are not associated with the hypothesized instability 
phenomenon. 
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APPENDIX: THE n-th ORDER GOVERNING EQUATIONS 

Yorticity equation 
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CONVECTION NATURELLE DANS UN ESPACE ETROIT ENTRE SPHERES 
CONCENTRIQUES 

Resume-On considtre la convection naturelle dun fluide enferme dans un espace etroit entre spheres 
concentriques. L’ecoulement est suppose permanent et rtpondant au modele Oberbeck-Boussinesq. L’espace 
etant mince devant le rayon de la sphere exttrieure, les variables sont resolues en utilisant une methode de 
perturbation en puissance de la largeur E. Des solutions sont trouvtes pour une sphere exttrieure chaude, en 
termes jusqu’a E . I1 Les rtsultats incluent les nombres de Nusselt, les lignes de courant et les isothermes en 
fonction des nombres de Grashof et de Prandtl, de E et de Q le paramttre adimensionnel uniforme de source 
d’energie. La valeur de E est comprise entre 0,l et 0,001, celles de Pr entre 0,Ol et 10, celles de Gr entre 7 x lo6 et 

5 x lo=. 

NATtiRLICHE KONVEKTION IN EINEM ENGEN KUGELFGRMIGEN SPALT 

Zusammenfassung-Der Gegenstand dieser Abhandlung ist die natiirliche Konvektion in einem engen 
kugelformigen Spalt. Es wird angenommen, dal.3 die Stromung stationlr ist, und das Fluid dem Oberbeck- 
Boussinesq Model1 folgt. Fur den Fall, dal3 die Spaltbreite im Verhiiltnis zum Durchmesser der aul3eren Kugel 
sehr klein ist, werden die abhiingigen Variablen mit Hilfe eines gewohnlichen Stiirungsverfahrens als 
Potenzfunktion der relativen Spaltbreite E ermittelt. Die Ergebnisse umfassen Nusselt-Zahlen, Stromlinien 
und Isothermen als Funktion der Grashof- und der Prandtl-Zahl, der relativen Spaltbreite und des 
dimensionslosen Parameters Q fur den gleichmLl3ig iibertragenen Warmestrom. Die Werte fur E reichen von 

0,l bis 0,001, fur Pr von 0,Ol bis 10 und fur Gr von 7 x lo6 bis 5 x 10”. 



Natural convection in narrow-gap, spherical annuli 739 

ECTECTBEHHAR KOHBEKUMR B TOHKOM COEPWIECKOM CJIOE 

hlHOTiUiIlR--M3y'4anaCb eCTeCTBeHHaR KOHBeKUAIl XHLIKOCTA, HaXOASUfeih B y3KOM 3a3Ope MexAy KOH- 

UCHTpA'ECKAMA C@epaMPi. TeYeHMe CWlTanOCb CTaLIMOHapHbIM, 6bIna npkiH5ITa MOAeAb 06ep6eKa- 
6yCC&fHCCKa. B CnyVae,KOrAa 3a3Op OYeHb MaJl II0 CpaBHeHPiEO C paAHyCOM BHeIIIHeti CI$epbI,3aBACMMble 

nCpeMeHHb,e HaxOAIlTCIf C "OMOUbH) pWynSpHOr0 MeTOAa B03MyUJeHUii II0 CTeneHIlM OTHOCPfTenbHOfi 

TO"UU,Hbl CIlOIl E.&Ill HarpeTOti Hapy~HOtiC+2pbI peWeHH%l HakAeHbl BI,nOTb A0 YneHOB nOpRAKa El'. 

nOJIyVeHbI3aBACAMOCTA 'IACen HyCCenbTa,ki3OnAHAk TOKa B H30TepM OT WCen rpaCrO@a II npaHATn,-i, 

BenwniHbI E II Q--6e3pa3Mepeoro napaMeTpa,xapaKTepasymqero MomHocTb sbIAensmuer?ca meprss. 

BenHmHbre sapmposamcb ~Aaanasoee OT 0,lno 0,001, Pr OT 0,Olno 10~ Gr OT 7 x 106ao 5 x 10”. 


